Number Of Electrons In Bromine



Bromine is a member of the halogen family of elements. Its companions include fluorine, chlorine, and iodine. Like the other halogens, bromine has seven electrons in its outer shell and is very reactive. You will find bromine in many salt compounds with alkali metals. Sodium bromide is a compound found in seawater. Bromine has 35 electrons, and to fill up its first shell, it needs 2 electrons, to fill up it's second shell it needs 8 electrons, same for the third shell, and then after that it needs 18 electrons (but it doesn't have quite that many). So, its 2.8.8.17.

Article
Please select which sections you would like to print:
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.

Our editors will review what you’ve submitted and determine whether to revise the article.

Join Britannica's Publishing Partner Program and our community of experts to gain a global audience for your work!
Articles from Britannica Encyclopedias for elementary and high school students.
Karl ChristeSee All Contributors
Research Professor of Chemistry, Department of Chemistry, University of Southern California, Los Angeles, Calif.
Alternative Title: Br

Bromine (Br), chemical element, a deep red noxious liquid, and a member of the halogen elements, or Group 17 (Group VIIa) of the periodic table.

118 Names and Symbols of the Periodic Table Quiz
The periodic table is made up of 118 elements. How well do you know their symbols? In this quiz you’ll be shown all 118 chemical symbols, and you’ll need to choose the name of the chemical element that each one represents.
Element Properties
atomic number35
atomic weight[79.901, 79.907]
melting point−7.2 °C (19 °F)
boiling point59 °C (138 °F)
specific gravity3.12 at 20 °C (68 °F)
oxidation states−1, +1, +3, +5, +7
electron configuration(Ar)3d104s24p5

History

Bromine was discovered in 1826 by the French chemist Antoine-Jérôme Balard in the residues (bitterns) from the manufacture of sea salt at Montpellier. He liberated the element by passing chlorine through an aqueous solution of the residues, which contained magnesium bromide. Distillation of the material with manganese dioxide and sulfuric acid produced red vapours, which condensed to a dark liquid. The similarity of this procedure to that for making chlorine suggested to Balard that he had obtained a new element similar to chlorine. (The German chemist Justus von Liebig appears to have obtained the element before Balard, but he wrongly considered it to be iodine chloride.) Because of the bad odour of the element, the French Academy of Sciences suggested the name bromine, from the Greek word bromos, meaning “bad smell” or “stench.”

Occurrence and distribution

A rare element, bromine is found in nature dispersed throughout Earth’s crust only in compounds as soluble and insoluble bromides. Some enrichment occurs in ocean water (65 parts per million by weight), in the Dead Sea (approximately 5 grams per litre [0.7 ounce per gallon]), in some thermal springs, and in rare insoluble silver bromide minerals (such as bromyrite, found in Mexico and Chile). Natural salt deposits and brines are the main sources of bromine and its compounds. Jordan, Israel, China, and the United States led the world in bromine production in the early 21st century; other important bromine-producing countries during that period include Japan, Ukraine, and India.

Natural bromine is a mixture of two stable isotopes: bromine-79 (50.54 percent) and bromine-81 (49.46 percent). Of the 17 known radioactive isotopes of the element, bromine-77 has the longest half-life (57 hours).

Get a Britannica Premium subscription and gain access to exclusive content. Subscribe Now

Physical and chemical properties

Free bromine is a reddish brown liquid with an appreciable vapour pressure at room temperature. Bromine vapour is amber in colour. Bromine has a pungent odour and is irritating to the skin, eyes, and respiratory system. Exposure to concentrated bromine vapour, even for a short time, may be fatal. Like the other halogens, bromine exists as diatomic molecules in all aggregation states.

About 3.41 grams (0.12 ounce) of bromine dissolve in 100 millilitres (0.1 quart) of water at room temperature. The solution is known as bromine water. Like chlorine water, it is a good oxidizing agent, and it is more useful because it does not decompose so readily. It liberates free iodine from iodide-containing solutions and sulfur from hydrogen sulfide. Sulfurous acid is oxidized by bromine water to sulfuric acid. In sunlight bromine water decomposes, with release of oxygen, as in the following equation:

From bromine water a hydrate (a clathrate) can be isolated that contains 172 water molecules and 20 cavities capable of accommodating the bromine molecules. Bromine dissolves in aqueous alkali hydroxide solutions, giving bromides, hypobromites, or bromates, depending on the temperature. Bromine is readily extracted from water by organic solvents such as carbon tetrachloride, chloroform, or carbon disulfide, in which it is very soluble. In the organic solvents it gives an orange solution.

The electron affinity of bromine is high and is similar to that of chlorine. It is, however, a less powerful oxidizing agent, chiefly because of the weaker hydration of the bromide ion as compared with the chloride ion. Similarly, a metal-bromine bond is weaker than the corresponding metal-chlorine bond, and this difference is reflected in the chemical reactivity of bromine, which lies between that of chlorine and that of iodine. An organic bromo compound resembles the corresponding chloro derivative but is usually more dense, less volatile, less combustible, and less stable.

Bromine combines violently with the alkali metals and with phosphorus, arsenic, aluminum, and antimony but less violently with certain other metals. Bromine displaces hydrogen from saturated hydrocarbons and adds to unsaturated hydrocarbons, though not as readily as chlorine does.

The most stable oxidation state of the element is −1, in which bromine occurs naturally. But oxidation states of 0 (elemental bromine, Br2), +1 (hypobromite, BrO), +3 (bromite, BrO2), +5 (bromate, BrO3), and +7 (perbromate, BrO4) are also known. The first ionization energy of bromine is high, and compounds containing bromine in positive oxidation numbers are stabilized by appropriate ligands, mainly oxygen and fluorine. Compounds with the oxidation numbers +1, +3, +4, +5, and +7 all contain covalent bonds.

Production and use

The chief commercial source of bromine is ocean water, from which the element is extracted by means of chemical displacement (oxidation) by chlorine in the presence of sulfuric acid through the reaction

The product of the reaction is a dilute solution of bromine, from which the element is removed by blowing air through it. The free bromine is then mixed with sulfur dioxide, and the mixed gases are passed up a tower down which water is trickling. The following reaction takes place in the tower:

resulting in a mixture of acids that is much richer in bromide ion than seawater. A second treatment with chlorine liberates bromine, which is freed from chlorine and purified by passage over moist iron filings.

Number Of Electrons In Bromine

Commercial bromine generally contains up to 0.3 percent chlorine. It is usually stored in glass bottles or in barrels coated with lead or Monel metal.

Number

The industrial usage of bromine had been dominated by the compound ethylene bromide (C2H4Br2), which once was added to gasoline with tetraethyl lead to prevent deposition of lead in the engine. Since the renunciation of leaded gasoline, bromine compounds have mainly been used in flame retardants, but ethylene bromide is still an important compound because of its use to destroy nematodes and other pests in soils. Bromine is also used in the production of catalysts, such as aluminum bromide.

Bromine has other uses, as in making various dyes and the compounds tetrabromoethane (C2H2Br4) and bromoform (CHBr3), which are used as liquids in gauges because of their high specific gravity. Until the development of barbiturates in the early 20th century, bromides of potassium, sodium, calcium, strontium, lithium, and ammonium were used widely in medicine because of their sedative action. Silver bromide (AgBr), an important component of photographic film, is, like silver chloride and iodide, light sensitive. Traces of potassium bromate (KBrO3) are added to wheat flour to improve baking. Other bromine compounds of significance include hydrogen bromide (HBr), a colourless gas used as a reducing agent and a catalyst in organic reactions. A solution of the gas in water is called hydrobromic acid, a strong acid that resembles hydrochloric acid in its activity toward metals and their oxides and hydroxides.

Quick Facts
key people
related topics
Electrons

What are the quantum numbers for Bromine?

1 Answer

Doc048 · Truong-Son N. · Stefan V.
Number of electrons in chlorine

Quantum Numbers define the character of an electron in an energy specific orbital. They do not define an element.

Explanation:

4 Quantum Numbers define the character of an electron in an energy specific orbital.

According to the Pauli Exclusion principle, no two electrons can have the same set of 4 quantum numbers. This is significant in that elements with multiple electrons cannot have more than two in a single orbital.

Think of the set of Quantum Numbers for an electron as being a 'discrete energy window' for that electron and no other electron in the element's electron configuration can occupy the same energy window.

The 4 Quantum Numbers (QN) and what they describe are:

  • Principle QN (#n#) => Defines Principal Energy Level
  • Orbital QN (#l#); also known as Angular Momentum QN => Shape of Orbital
  • Magnetic QN (#m_l#) => Orientation of orbital in 3 dimensions
  • Spin QN (#m_s#) => the spin of the electron, up or down #pm 1/2#, respectively).

The 4 Quantum Numbers for the 'last' electron to fill a Bromine electronic configuration would be the electron in the half-filled #4p# orbital...

#=> (n, l, m_l, m_s) = (4, 1, {-1,0,+1}, -1/2) =># represents only one of 35 electrons in the neutral Bromine atom.

We choose the set of #m_l# because the three #4p# orbitals are identical and thus there are three configurations that have the same energy:

Number Of Paired Electrons In Bromine

#4p_x^2 4p_y^2 4p_z^(color(blue)(1))#

#4p_x^2 4p_y^(color(blue)(1)) 4p_z^2#

Number Of Electrons In Chlorine

#4p_x^(color(blue)(1)) 4p_y^2 4p_z^2#

How To Find Number Of Electrons In Bromine

Related questions